Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 770
Filtrar
1.
PLoS One ; 19(5): e0300702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696377

RESUMO

The objective of the current investigation was to evaluate the induction of heat shock proteins (HSPs) in SP2/0 transgenic cells and the effect of these proteins on the production of monoclonal antibodies (mAbs). The SP2/0 cell line expressing the PSG-026 antibody, a biosimilar candidate of golimumab, the culture parameters, and the target protein expression were not justified for industrial production and were used for the experiments. Paracetamol and heat shock were used as chemical and physical inducers of HSPs, respectively. The results showed that paracetamol and heat shock increased the expression of HSP70 and HSP27 at the mRNA and protein levels. The expression of HSPs was greater in paracetamol-treated cells than in heat shock-treated cells. Paracetamol treatment at concentrations above 0.5 mM significantly reduced cell viability and mAb expression. However, treatment with 0.25 mM paracetamol results in delayed cell death and increased mAb production. Heat shock treatment at 45°C for 30 minutes after enhanced mAb expression was applied after pre-treatment with paracetamol. In bioreactor cultures, pretreatment of cells with paracetamol improved cell viability and shortened the lag phase, resulting in increased cell density. The production of mAbs in paracetamol-treated cultures was markedly greater than that in the control. Analysis of protein quality and charge variants revealed no significant differences between paracetamol-treated and control cultures, indicating that the induction of HSPs did not affect protein aggregation or charge variants. These findings suggest that inducing and manipulating HSP expression can be a valuable strategy for improving recombinant protein production in biopharmaceutical processes.


Assuntos
Acetaminofen , Anticorpos Monoclonais , Sobrevivência Celular , Anticorpos Monoclonais/farmacologia , Animais , Acetaminofen/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Reatores Biológicos , Resposta ao Choque Térmico/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Linhagem Celular
2.
Biomacromolecules ; 25(5): 2965-2972, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38682378

RESUMO

Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.


Assuntos
DNA , Humanos , DNA/química , Transfecção/métodos , Polímeros/química , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura , Temperatura Alta
3.
Toxins (Basel) ; 16(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38668592

RESUMO

Broiler chickens in livestock production face numerous challenges that can impact their health and welfare, including mycotoxin contamination and heat stress. In this study, we aimed to investigate the combined effects of two mycotoxins, deoxynivalenol (DON) and fumonisins (FBs), along with short-term heat stress conditions, on broiler gut health and endotoxin translocation. An experiment was conducted to assess the impacts of mycotoxin exposure on broilers, focusing on intestinal endotoxin activity, gene expression related to gut barrier function and inflammation, and the plasma concentration of the endotoxin marker 3-OH C14:0 either at thermoneutral conditions or short-term heat stress conditions. Independently of heat stress, broilers fed DON-contaminated diets exhibited reduced body weight gain during the starter phase (Day 1-12) compared to the control group, while broilers fed FB-contaminated diets experienced decreased body weight gain throughout the entire trial period (Day 1-24). Furthermore, under thermoneutral conditions, broilers fed DON-contaminated diets showed an increase in 3-OH C14:0 concentration in the plasma. Moreover, under heat stress conditions, the expression of genes related to gut barrier function (Claudin 5, Zonulin 1 and 2) and inflammation (Toll-like receptor 4, Interleukin-1 beta, Interleukin-6) was significantly affected by diets contaminated with mycotoxins, depending on the gut segment. This effect was particularly prominent in broilers fed diets contaminated with FBs. Notably, the plasma concentration of 3-OH C14:0 increased in broilers exposed to both DON- and FB-contaminated diets under heat stress conditions. These findings shed light on the intricate interactions between mycotoxins, heat stress, gut health, and endotoxin translocation in broiler chickens, highlighting the importance of understanding these interactions for the development of effective management strategies in livestock production to enhance broiler health and welfare.


Assuntos
Ração Animal , Galinhas , Endotoxinas , Contaminação de Alimentos , Fusarium , Tricotecenos , Animais , Galinhas/microbiologia , Endotoxinas/sangue , Tricotecenos/toxicidade , Fumonisinas/toxicidade , Masculino , Dieta/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos , Micotoxinas/toxicidade
4.
Neuroreport ; 35(9): 558-567, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38687900

RESUMO

Heat stroke induced cerebral damage via neuroinflammation. This study aimed to approach whether heat stress would promote NOD-like receptor protein 3 (NLRP3) inflammasome via reactive oxygen species (ROS). The mice were randomly divided into the sham group, the heat stress group, and the heat stress + TEMPOL (ROS scavenger) group. And the NLRP3 -/- mice were applied and divided into the NLRP3 -/-  + sham group and the NLRP3 -/-  + heat stress group. Furthermore, the BV2 cells were divided into four groups following the intervention measures: the heat stress + TEMPOL group, the heat stress + Z-VAD-FMK (caspase-1 inhibitor) group, the heat stress group, and the control group. ROS levels were examined. The expression levels of NLRP3, caspase-1, IL-1ß, and IL-18 were detected by western blotting and double immunofluorescence. We found that heat stress attack induced excessive ROS in microglia and subsequently activated NLRP3 inflammasome in both mice and BV2 cells. When ROS scavenged, the expression level of NLRP3 was downregulated. Furthermore, with NLRP3 inflammasome activation, the expression levels of caspase-1, IL-1ß, and IL-18 were increased. In NLRP3 -/- mice, however, the caspase-1, IL-1ß, and IL-18 were significantly declined. Further experiments showed that pretreatment of caspase-1 inhibitor decreased the expression levels of IL-1ß and IL-18. These results suggest that heat stress attack caused neuroinflammation via excessive ROS activating the NLRP3 inflammasome in microglia cells.


Assuntos
Golpe de Calor , Inflamassomos , Interleucina-18 , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-18/metabolismo , Camundongos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Golpe de Calor/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Camundongos Knockout , Masculino , Caspase 1/metabolismo , Resposta ao Choque Térmico/fisiologia , Resposta ao Choque Térmico/efeitos dos fármacos
5.
Open Vet J ; 14(3): 830-839, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38682150

RESUMO

Background: Heat stress (HS) is a main abiotic stress factor for the health and welfare of animals. Recently, the use of nano-emulsion essential oils exhibited a promising approach to mitigate the detrimental impacts of abiotic and biotic stresses, ultimately contributing to the global aim of sustainable livestock production. Aim: The current study was piloted to assess the impact of eugenol nano-emulsion (EUGN) supplementation on growth performance, serum metabolites, redox homeostasis, immune response, and pro-inflammatory reactions in growing rabbits exposed to HS. Methods: A total of 100 male weaning rabbits aged 35 days were divided into 4 treatments. Rabbits were fed the diet with EUGN at different concentrations: 0 (control group; EUGN0), 50 (EUGN50), 100 (EUGN100), and 150 (EUGN150) mg/kg diet for 8 weeks under summer conditions. Results: Dietary EUGN levels significantly improved (p < 0.05) the body weight, body weight gain, carcass weights, and improved feed conversion ratio of rabbits. EUGN supplementation significantly increased Hb, platelets, and red blood cells , while the mean corpuscular hemoglobin and eosinophils were significantly decreased compared to the control one. Compared with EUGN0 stressed rabbits, all EUGN-experimental groups had a reduction in levels of total glycerides (p < 0.01), uric acid, total bilirubin, direct bilirubin, and gamma-glutamyl transpeptidase (p < 0.01). Total antioxidant capacity and glutathione peroxidase were significantly improved by EUGN treatment when compared to the control one (p < 0.01), while the EUGN100 exhibited the greatest levels of catalase. Lipid peroxidation (malondialdehyde) was significantly decreased in EUGN-treated groups. All pro-inflammatory cytokines serum interleukin 4, Interleukin 1ß, and tumor necrosis factor alpha were considerably decreased after dietary EUGN supplementation (p < 0.05). The serum concentrations of immunoglobulins (IgG and IgM) were significantly improved in rabbits of the EUGN150 group. Conclusion: This study shows that EUGN can be used as a novel feed additive to enhance the growth performance, immune variables, and antioxidants, and reduce the inflammatory response of growing rabbits exposed to thermal stress.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Eugenol , Homeostase , Animais , Coelhos , Eugenol/administração & dosagem , Eugenol/farmacologia , Masculino , Suplementos Nutricionais/análise , Ração Animal/análise , Homeostase/efeitos dos fármacos , Dieta/veterinária , Oxirredução/efeitos dos fármacos , Emulsões , Inflamação/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos
6.
J Therm Biol ; 104: 103168, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180958

RESUMO

Betaine can operate as an osmolyte and a methyl donor. Betaine is an osmolyte and a methyl donor. Betaine is likewise a zwitterion with osmotic capabilities that can help an animal cope with osmotic stress. Previous investigations have suggested that betaine has various impacts, albeit these studies do not consistently provide the same results. Dietary betaine has received a lot of attention owing to its osmoprotectant, methionine-sparing and antioxidant properties. Betaine is extensively assessed concerning performance and body composition. The tolerance to high temperatures, flock livability, and breast meat output is among the factors frequently mentioned in the literature as being altered by betaine. Betaine, a multi-nutritional agent, may help poultry resist heat stress and poor management. A common subject of betaine research is the idea of betaine saving some methionine. Although research on betaine may not always come to the same results, some discoveries repeat themselves. Because of their effectiveness in increasing growth performance, feed utilization, meat quality, and alleviating heat stress in chicken farms, betaine and methionine are extensively used as feed supplements in poultry diets. This review highlights the influences of betaine on poultry performance, meat quality, carcass characteristics, antioxidant activity, in addition to its role in mitigating heat stress.


Assuntos
Betaína/farmacologia , Galinhas/crescimento & desenvolvimento , Resposta ao Choque Térmico/efeitos dos fármacos , Metionina/farmacologia , Animais , Antioxidantes , Betaína/administração & dosagem , Composição Corporal , Dieta/veterinária , Suplementos Nutricionais , Fazendas , Produtos da Carne , Metionina/administração & dosagem
7.
J Therm Biol ; 104: 103195, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180972

RESUMO

This study was conducted to assess the impact of dietary incorporation of Spirulina platensis and selenium nanoparticles (SeNPs) individually or in combinations on growth performance, antioxidant status, humoral immune response, and microbial populations in diet and ileum of heat-stressed broilers. Ross-308 one-day chicks (n = 450) were fed one of 9 experimental diets with five replicate cages in 2 phases for 35 d. The experimental diets were a control basal diet without supplementation or with 0.1 mg SeNPs, 0.2 mg SeNPs, 5 g Spirulina, 10 g Spirulina, 0.1 mg SeNPs + 5 g Spirulina, 0.1 mg SeNPs + 10 g Spirulina, 0.2 mg SeNPs + 5 g Spirulina and 0.2 mg SeNPs + 10 g Spirulina per kg diet. Dietary supplementation with Spirulina and SeNPs significantly (P < 0.05) increased body weight gain and European production efficiency factor. Serum GPx and SOD were significantly (P < 0.05) increased with dietary Spirulina and SeNPs supplementation, while, TBARS was decreased (P < 0.05). Circulating immunoglobulin IgM, IgA and IgG were increased in treated birds compared to the control ones, while the antibody titers to IBD, AIV, and NDV were not significantly altered. The results showed that SeNPs and Spirulina exhibited dose-dependent antimicrobial activities against ileal counts of total bacterial, total molds and yeast, coliform, E. coli, Salmonella spp. and Enterococcus spp. However, ileal populations of Lactic acid bacteria were increased with dietary Spirulina and SeNPs in a dose-dependent manner. The microbial load in broilers' diets was reduced by dietary incorporation of S. platensis and SeNPs. These results indicate that Spirulina and SeNPs can be potentially used as growth promoters and antioxidant, immunostimulant, and antimicrobial agents in heat-stressed broilers.


Assuntos
Antioxidantes/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Imunidade Humoral/fisiologia , Selênio/química , Spirulina/química , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise , Temperatura Alta , Íleo/metabolismo , Íleo/microbiologia , Isotipos de Imunoglobulinas/sangue , Nanopartículas
8.
J Therm Biol ; 103: 103100, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35027195

RESUMO

Spirulina, the blue green algae is considered to exhibit multifaceted benefits on both human health and animal production. Three hundred sixty day old unsexed broiler chicks of CARIBROVISHAL strain were assigned to five treatment groups each comprising nine replicates of 8 chicks. The experiment was carried out during the hot humid summer season (Mid-April to May) under deep litter rearing system with uniform managemental conditions. Birds were administered orally with Spirulina through drinking water in the morning (06:00-12:00 PM) on daily basis throughout the experimental period at 5, 10, 15 and 20 gL-1 concentration. Spirulina supplementation neither improved nor compromised production performance of broilers reared during hot climatic condition. Results based on one way analysis of variance indicated a significant effect on haemoglobin and total red blood cell count. Serum lipid content and transaminases were reduced, while serum protein concentration was higher (P < 0.01) in the groups administered with 15 and 20 gL-1 of Spirulina. The extent of imparting shank pigmentation was improved in all the supplemented groups. Cell mediated and humoral immunity against Phytoheamagglutunin-P and Newcastle disease vaccination respectively were maximized (P < 0.05) at 20 gL-1. These findings provide direct evidence of dose-related modulation of production, physiological and immunological attributes by Spirulina engendering its further investigation as a potential source of drinking water supplement for stress alleviation in broilers. From the results, it may concluded that Spirulina can be incorporated at 15 or 20 gL-1 for achieving optimal improvement of health and welfare attributes in broilers reared during hot summer without compromising production.


Assuntos
Antioxidantes/metabolismo , Água Potável/química , Resposta ao Choque Térmico/efeitos dos fármacos , Spirulina/química , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise , Temperatura Alta
9.
J Sci Food Agric ; 102(2): 496-504, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34145905

RESUMO

BACKGROUND: Heat stress (HS) has a negative impact on the intestinal barrier and immune function of pigs. Selenium (Se) may improve intestinal health through affecting selenoproteins. Thus we investigate the protective effect of new organic Se (2-hydroxy-4-methylselenobutanoic acid, HMSeBA) on jejunal damage in growing pigs upon HS and integrate potential roles of corresponding selenoproteins. RESULTS: HS decreased the villus height and increased (P < 0.05) the protein abundance of HSP70, and downregulated (P < 0.05) protein levels of tight junction-related proteins (CLDN-1 and OCLD). HS-induced jejunal damage was associated with the upregulation of four inflammation-related genes and ten selenoprotein-encoding genes, downregulation (P < 0.05) of four selenoprotein-encoding genes and decreased (P < 0.05) the protein abundance of GPX4 and SELENOS. Compared with the HS group, HMSeBA supplementation not only elevated the villus height and the ratio of V/C (P < 0:05), but also reduced (P < 0.05) the protein abundance of HSP70 and MDA content, and increased (P < 0.05) the protein abundance of OCLD. HMSeBA supplementation downregulated the expression of seven inflammation-related genes, changed the expression of 12 selenoprotein-encoding genes in jejunum mucosa affected by HS, and increased the protein abundance of GPX4, TXNRD1 and SELENOS. CONCLUSION: Organic Se supplementation beyond nutritional requirement alleviates the negative effect of HS on the jejunum of growing pigs, and its protective effect is related to the response of corresponding selenoproteins. © 2021 Society of Chemical Industry.


Assuntos
Transtornos de Estresse por Calor/veterinária , Mucosa Intestinal/imunologia , Jejuno/imunologia , Substâncias Protetoras/administração & dosagem , Selênio/administração & dosagem , Doenças dos Suínos/prevenção & controle , Animais , Suplementos Nutricionais/análise , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/imunologia , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/imunologia , Transtornos de Estresse por Calor/prevenção & controle , Resposta ao Choque Térmico/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Selenoproteínas/genética , Selenoproteínas/imunologia , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/imunologia
10.
Pharm Biol ; 60(1): 17-24, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34846265

RESUMO

CONTEXT: Vascular calcification is a major complication of chronic renal failure, which has been identified as an active process partly driven by osteogenic transition of vascular smooth muscle cells (VSMCs). Aspirin could prevent cardiomyocyte damage by inducing heat shock response. OBJECTIVE: This study investigates the effect of aspirin on alleviating VSMC calcification. MATERIALS AND METHODS: An in vitro VSMC calcification model was established by 10-day calcification induction in osteogenic medium. VSMCs were grouped as following: control group (normal medium), calcified group (osteogenic medium) and treated group (osteogenic medium with 1 or 4 mmol/L aspirin). VSMC calcification was evaluated by calcified nodules formation, intracellular calcium concentration and osteoblastic marker (OPN and Runx2) expression. RESULTS: After 10-day culture, the intracellular calcium concentration in calcified group was significantly higher than that in control group (1.16 ± 0.04 vs. 0.14 ± 0.01 µg/mg, p < 0.01), but significantly reduced in 1 mmol/L aspirin treated group (0.74 ± 0.05 µg/mg, p < 0.01), and 4 mmol/L aspirin treated group (0.93 ± 0.03 µg/mg, p < 0.01). The elevated expression of OPN and Runx2 induced by osteogenic medium was significantly relieved after 1 or 4 mmol/L aspirin treatment. The expression of HSF1, HSP70 and HSP90 was decreased in calcification-induced VSMCs, but significantly increased after treatment of aspirin. Furthermore, inhibition of HSP70 (or HSP90) by small-molecule inhibitor or small interfering RNA could partially abolish the anti-calcification effect of aspirin, proved by the changes of intracellular calcium concentration and osteoblastic marker expression. DISCUSSION AND CONCLUSIONS: Aspirin could relieve the calcification of VSMCs partially through HSP70- or HSP90-mediated heat shock response. These findings expanded the understanding of aspirin pharmacology, and imply that local induction expression of HSPs might be a potential therapeutic strategy for the prevention and therapy of vascular calcification.


Assuntos
Aspirina/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Calcificação Vascular/tratamento farmacológico , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Ratos Sprague-Dawley
11.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948274

RESUMO

Environmentally hazardous substances such as pesticides are gaining increasing interest in agricultural and nutritional research. This study aims to investigate the impact of these compounds on the healthspan and mitochondrial functions in an invertebrate in vivo model and in vitro in SH-SY5Y neuroblastoma cells, and to investigate the potential of polyphenolic metabolites to compensate for potential impacts. Wild-type nematodes (Caenorhabditis elegans, N2) were treated with pesticides such as pyraclostrobin (Pyr), glyphosate (Gly), or fluopyram (Fluo). The lifespans of the nematodes under heat stress conditions (37 °C) were determined, and the chemotaxis was assayed. Energetic metabolites, including adenosine triphosphate (ATP), lactate, and pyruvate, were analyzed in lysates of nematodes and cells. Genetic expression patterns of several genes associated with lifespan determination and mitochondrial parameters were assessed via qRT-PCR. After incubation with environmentally hazardous substances, nematodes were incubated with a pre-fermented polyphenol mixture (Rechtsregulat®Bio, RR) or protocatechuic acid (PCA) to determine heat stress resistance. Treatment with Pyr, Glyph and Fluo leads to dose-dependently decreased heat stress resistance, which was significantly improved by RR and PCA. The chemotaxes of the nematodes were not affected by pesticides. ATP levels were not significantly altered by the pesticides, except for Pyr, which increased ATP levels after 48 h leads. The gene expression of healthspan and mitochondria-associated genes were diversely affected by the pesticides, while Pyr led to an overall decrease of mRNA levels. Over time, the treatment of nematodes leads to a recovery of the nematodes on the mitochondrial level but not on stress resistance on gene expression. Fermented extracts of fruits and vegetables and phenolic metabolites such as PCA seem to have the potential to recover the vitality of C. elegans after damage caused by pesticides.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Praguicidas/efeitos adversos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Fatores Quimiotáticos/metabolismo , DNA Mitocondrial/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Invertebrados/efeitos dos fármacos , Longevidade/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/farmacologia , Polifenóis/efeitos adversos , Polifenóis/metabolismo , Polifenóis/farmacologia
12.
Oxid Med Cell Longev ; 2021: 7656834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616504

RESUMO

Trigonelline is the main alkaloid with bioactivity presented in fenugreek, which was used in traditional medicine in Asian countries for centuries. It is reported that trigonelline has anti-inflammatory, anti-oxidant, and anti-pathogenic effects. We are wondering whether trigonelline have anti-aging effect. We found that 50 µM of trigonelline had the best anti-aging activity and could prolong the lifespan of Caenorhabditis elegans (C. elegans) by about 17.9%. Trigonelline can enhance the oxidative, heat, and pathogenic stress resistance of C. elegans. Trigonelline could also delay the development of neurodegenerative diseases, such as AD, PD, and HD, in models of C. elegans. Trigonelline could not prolong the lifespan of long-lived worms with loss-of-function mutations in genes regulating energy and nutrition, such as clk-1, isp-1, eat-2, and rsks-1. Trigonelline requires daf-16, hsf-1, and aak-2 to extend the lifespan of C. elegans. Trigonelline can also up-regulate the expression of daf-16 and hsf-1 targeted downstream genes, such as sod-3, gst-4, hsp-16.1, and hsp-12.6. Our results can be the basis for developing trigonelline-rich products with health benefits, as well as for further research on the pharmacological usage of trigonelline.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/efeitos dos fármacos , Alcaloides/administração & dosagem , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Longevidade/efeitos dos fármacos , Doenças Neurodegenerativas/prevenção & controle , Extratos Vegetais/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Trigonella/química , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Estimativa de Kaplan-Meier , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Cell Stress Chaperones ; 26(6): 889-915, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34677749

RESUMO

Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.


Assuntos
Poluição do Ar/efeitos adversos , Exercício Físico/efeitos adversos , Proteínas de Choque Térmico HSP70/sangue , Inflamação/sangue , Biomarcadores/sangue , Complicações do Diabetes/sangue , Complicações do Diabetes/complicações , Complicações do Diabetes/terapia , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Obesidade/sangue , Obesidade/complicações , Obesidade/terapia , Estresse Oxidativo/efeitos dos fármacos
14.
Sci Rep ; 11(1): 20608, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663855

RESUMO

Heat stress can significantly affect the immune function of the animal body. Heat stress stimulates oxidative stress in intestinal tissue and suppresses the immune responses of mice. The protecting effects of chitosan on heat stress induced colitis have not been reported. Therefore, the aim of this study was to investigate the protective effects of chitosan on immune function in heat stressed mice. Mice were exposed to heat stress (40 °C per day for 4 h) for 14 consecutive days. The mice (C57BL/6J), were randomly divided into three groups including: control group, heat stress, Chitosan group (LD: group 300 mg/kg/day, MD: 600 mg/kg/day, HD: 1000 mg/kg/day). The results showed that tissue histology was improved in chitosan groups than heat stress group. The current study showed that the mice with oral administration of chitosan groups had improved body performance as compared with the heat stress group. The results also showed that in chitosan treated groups the production of HSP70, TLR4, p65, TNF-α, and IL-10 was suppressed on day 1, 7, and 14 as compared to the heat stress group. In addition Claudin-2, and Occludin mRNA levels were upregulated in mice receiving chitosan on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, and TNF-α plasma levels were down-regulated on day 1, 7, and 14 of heat stress in mice receiving the oral administration of chitosan. In conclusion, the results showed that chitosan has an anti-inflammatory ability to tolerate hot environmental conditions.


Assuntos
Quitosana/farmacologia , Resposta ao Choque Térmico/imunologia , Resposta ao Choque Térmico/fisiologia , Animais , Quitosana/metabolismo , Colite/tratamento farmacológico , Colite/imunologia , Colite/metabolismo , Citocinas/análise , Citocinas/sangue , Resposta ao Choque Térmico/efeitos dos fármacos , Inflamação , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
15.
ScientificWorldJournal ; 2021: 8711286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707467

RESUMO

The administration of plant extracts to broilers may be a way to mitigate the effects of heat stress. The importance of AQP2 and HSP70 compounds in maintaining the homeostasis of the chicken body when it is subjected to heat stress is well established. This study aims to determine the effect of giving the ethanolic extract of the leaves of Salix tetrasperma Roxb. on the immunohistochemical expression of AQP2 and HSP70 in exposed and unexposed broiler kidney tissue. This study used 36 samples of 28-day-old chicken kidneys. Chickens were kept in individual cages, provided with feed and drinking water ad libitum. The design used was a completely randomized design with 6 treatments and 6 replications: (a) chickens were reared in conditions exposed to heat (HS + 0); (b) chickens were reared in conditions exposed to heat and given Salix extract at a dose of 50 mg/L drinking water (HS + 50); (c) chickens were reared under heat-exposed conditions and given Salix extract at a dose of 100 mg/L drinking water (HS + 100); (d) chickens were reared in conditions without exposure to heat (n-HS + 0); (e) chickens were reared in conditions without exposure to heat and given Salix extract at a dose of 50 mg/L drinking water (nHS + 50); and (f) chickens were reared in conditions exposed without exposure to heat and given 100 mg/L drinking water (nHS + 100) of Salix extract. Salix extract was given for 24 hours and was renewed every 6 hours. The results showed that giving Salix extract 100 mg/L in drinking water to chickens exposed to heat (HS + 100) reduced the value of the H/L ratio. Giving Salix extract 50-100 mg/L in drinking water caused an upregulated AQP2 expression; on the other hand, it downregulated HSP-70 expression, in chicken kidney tubules both exposed to heat stress and nonexposed to heat stress. In conclusion, exposure to heat stress in broiler chickens and giving Salix extract can increase the formation of aquaporin 2 compounds and suppress the formation of HSP70.


Assuntos
Aquaporina 2/biossíntese , Proteínas de Choque Térmico HSP70/biossíntese , Transtornos de Estresse por Calor/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Salix , Animais , Aquaporina 2/genética , Galinhas , Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Transtornos de Estresse por Calor/tratamento farmacológico , Resposta ao Choque Térmico/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/metabolismo
16.
Cells ; 10(10)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685698

RESUMO

Certain plant extracts (PEs) contain bioactive compounds that have antioxidant and lifespan-extending activities on organisms. These PEs play different roles in cellular processes, such as enhancing stress resistance and modulating longevity-defined signaling pathways that contribute to longevity. Here, we report the discovery of PEs that extended chronological life span (CLS) in budding yeast from a screen of 222 PEs. We identified two PEs, the leaf extracts of Manihot esculenta and Wodyetia bifurcata that extended CLS in a dose-dependent manner. The CLS-extending PEs also conferred oxidative stress tolerance, suggesting that these PEs might extend yeast CLS through the upregulation of stress response pathways.


Assuntos
Extratos Vegetais/farmacologia , Plantas/química , Saccharomyces cerevisiae/fisiologia , Clima Tropical , Resposta ao Choque Térmico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/análise , Saccharomyces cerevisiae/efeitos dos fármacos
17.
J Therm Biol ; 100: 103075, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503812

RESUMO

Heat stress is the most significant environmental factor involved in the impairment of the health status of rabbits and lowering their productivity. Using medicinal feed additives is suggested to relieve heat stress-induced oxidative stress in rabbits. The study investigated the possible protective role of ginger root (Zingiber officinale) against heat stress in rabbits. Five week old rabbits were assigned randomly into four groups (48 rabbits each) and fed a basal diet supplemented with 0, 2.5, 5.0, and 7.5 g ginger powder/kg diet. The temperature and relative humidity inside the rabbitry units were kept at 33.0 ± 5.5 °C and 74.5 ± 4.5%, respectively, during 8 weeks fattening period. The results showed that rabbits that received the 7.5 g ginger powder/kg supplement had the highest final body weight. Rabbits that received different ginger powder levels recorded lower mortality values during the experimental period compared to that received the control diet, but the differences were not significant (5.0 vs. 10.0%, respectively). Rabbits fed 5.0 and 7.5 g ginger diet recorded the best food conversion ratio (P < 0.001). The weight of the carcass was significantly increased (P < 0.01) by supplementing ginger powder in diets. The digestibility of dry matter, organic matter, crude protein, and nitrogen free extracts nutrients was increased, but ether extract was significantly decreased (P < 0.001) by using ginger powder in diets. The detected blood metabolites displayed increased total protein but decreased triglycerides, total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) in rabbits treated with ginger. Rabbits fed 5.0 and 7.5 g ginger powder had the highest plasma total antioxidative capacity (TAC) and the lowest (P < 0.01) plasma malondialdehyde (MDA) concentration compared to those fed control diet. Conclusively, supplementing ginger powder up to a 5.0 g/kg diet for growing rabbits is recommended to improve the growth performance and enhanced viability under heat stress conditions.


Assuntos
Antioxidantes/uso terapêutico , Transtornos de Estresse por Calor/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Coelhos/fisiologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais , Zingiber officinale , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos , Estresse Oxidativo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia
18.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500550

RESUMO

Global warming is impacting the growth and development of economically important but sensitive crops, such as soybean (Glycine max L.). Using pleiotropic signaling molecules, melatonin can relieve the negative effects of high temperature by enhancing plant growth and development as well as modulating the defense system against abiotic stresses. However, less is known about how melatonin regulates the phytohormones and polyamines during heat stress. Our results showed that high temperature significantly increased ROS and decreased photosynthesis efficiency in soybean plants. Conversely, pretreatment with melatonin increased plant growth and photosynthetic pigments (chl a and chl b) and reduced oxidative stress via scavenging hydrogen peroxide and superoxide and reducing the MDA and electrolyte leakage contents. The inherent stress defense responses were further strengthened by the enhanced activities of antioxidants and upregulation of the expression of ascorbate-glutathione cycle genes. Melatonin mitigates heat stress by increasing several biochemicals (phenolics, flavonoids, and proline), as well as the endogenous melatonin and polyamines (spermine, spermidine, and putrescine). Furthermore, the positive effects of melatonin treatment also correlated with a reduced abscisic acid content, down-regulation of the gmNCED3, and up-regulation of catabolic genes (CYP707A1 and CYP707A2) during heat stress. Contrarily, an increase in salicylic acid and up-regulated expression of the defense-related gene PAL2 were revealed. In addition, melatonin induced the expression of heat shock protein 90 (gmHsp90) and heat shock transcription factor (gmHsfA2), suggesting promotion of ROS detoxification via the hydrogen peroxide-mediated signaling pathway. In conclusion, exogenous melatonin improves the thermotolerance of soybean plants and enhances plant growth and development by activating antioxidant defense mechanisms, interacting with plant hormones, and reprogramming the biochemical metabolism.


Assuntos
Antioxidantes/metabolismo , Glycine max/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Melatonina/farmacologia , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poliaminas/metabolismo , Plântula/efeitos dos fármacos , Termotolerância/efeitos dos fármacos , Ácido Abscísico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500767

RESUMO

Chitosan (CTS) is a deacetylated derivative of chitin that is involved in adaptive response to abiotic stresses. However, the regulatory role of CTS in heat tolerance is still not fully understood in plants, especially in grass species. The aim of this study was to investigate whether the CTS could reduce heat-induced senescence and damage to creeping bentgrass associated with alterations in antioxidant defense, chlorophyll (Chl) metabolism, and the heat shock pathway. Plants were pretreated exogenously with or without CTS (0.1 g L-1) before being exposed to normal (23/18 °C) or high-temperature (38/33 °C) conditions for 15 days. Heat stress induced detrimental effects, including declines in leaf relative water content and photochemical efficiency, but significantly increased reactive oxygen species (ROS) accumulation, membrane lipid peroxidation, and Chl loss in leaves. The exogenous application of CTS significantly alleviated heat-induced damage in creeping bentgrass leaves by ameliorating water balance, ROS scavenging, the maintenance of Chl metabolism, and photosynthesis. Compared to untreated plants under heat stress, CTS-treated creeping bentgrass exhibited a significantly higher transcription level of genes involved in Chl biosynthesis (AsPBGD and AsCHLH), as well as a lower expression level of Chl degradation-related gene (AsPPH) and senescence-associated genes (AsSAG12, AsSAG39, Asl20, and Ash36), thus reducing leaf senescence and enhancing photosynthetic performance under heat stress. In addition, the foliar application of CTS significantly improved antioxidant enzyme activities (SOD, CAT, POD, and APX), thereby effectively reducing heat-induced oxidative damage. Furthermore, heat tolerance regulated by the CTS in creeping bentgrass was also associated with the heat shock pathway, since AsHSFA-6a and AsHSP82 were significantly up-regulated by the CTS during heat stress. The potential mechanisms of CTS-regulated thermotolerance associated with other metabolic pathways still need to be further studied in grass species.


Assuntos
Agrostis/efeitos dos fármacos , Antioxidantes/farmacologia , Quitosana/farmacologia , Clorofila/metabolismo , Temperatura Alta , Folhas de Planta/efeitos dos fármacos , Agrostis/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Folhas de Planta/metabolismo
20.
Sci Rep ; 11(1): 18175, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518614

RESUMO

Heat shock (HS) protein 70 (HSP70), a well-known HS-induced protein, acts as an intracellular chaperone to protect cells against stress conditions. Although HS induces HSP70 expression to confer stress resistance to cells, HS causes cell toxicity by increasing reactive oxygen species (ROS) levels. Recently, a standardized extract of Asparagus officinalis stem (EAS), produced from the byproduct of asparagus, has been shown to induce HSP70 expression without HS and regulate cellular redox balance in pheochromocytoma cells. However, the effects of EAS on reproductive cell function remain unknown. Here, we investigated the effect of EAS on HSP70 induction and oxidative redox balance in cultured bovine cumulus-granulosa (CG) cells. EAS significantly increased HSP70 expression; however, no effect was observed on HSP27 and HSP90 under non-HS conditions. EAS decreased ROS generation and DNA damage and increased glutathione (GSH) synthesis under both non-HS and HS conditions. Moreover, EAS synergistically increased HSP70 and HSF1 expression and increased progesterone levels in CG cells. Treatment with an HSP70 inhibitor significantly decreased GSH level, increased ROS level, and decreased HSF1, Nrf2, and Keap1 expression in the presence of EAS. Furthermore, EAS significantly increased progesterone synthesis. Thus, EAS improves HSP70-mediated redox balance and cell function in bovine CG cells.


Assuntos
Asparagus/química , Células do Cúmulo/citologia , Células do Cúmulo/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Extratos Vegetais/farmacologia , Animais , Bovinos , Dano ao DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Caules de Planta/química , Progesterona/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA